Development of probiotic peanut butter and peanut spread

Jinru Chen, Robert D. Phillips, and Jonathan H. Williams

The University of Georgia

Mortality resulting from diarrhea, especially that occurs in children younger than 5 years of age ranks 3rd among all deaths caused by infectious diseases worldwide. Probiotics such as *Lactobacillus rhamnosus* GG are clinically shown to effectively reduce the incidence of diarrhea in children. A food substrate is one of the major factors regulating the colonization of microorganisms in human gastrointestinal tracts. Peanut butter is a nutritious, low-moisture food that could be a carrier for probiotics. In this study, we observed the influence of storage conditions and product matrixes on the survival of *L. rhamnosus* GG. Cells of *L. rhamnosus* GG were inoculated into full fat or reduced fat peanut butter at 10^7 CFU/g. Inoculated peanut butter was stored at 4, 25 or 37 °C for 48 wk. Samples were drawn periodically to determine the populations of *L. rhamnosus* GG. Results showed that there was no significant decrease in the viable counts of *L. rhamnosus* GG in products stored 4 °C. The survivability of *L. rhamnosus* GG decreased with increasing storage temperature and time. Fat content of the products did not significantly affect the survival of *L. rhamnosus* GG except at 37 °C. Populations of *L. rhamnosus* GG were preserved at > 6 log level in products stored at 4 °C for 48 wk and at 25 °C for 23-27 wk. At 37 °C, the 6 log level could not be maintained for even 6 wk. Research suggests that peanut butter stored at 4 and 25 °C could serve as vehicles to deliver probiotics.